If it's not what You are looking for type in the equation solver your own equation and let us solve it.
80x^2+160x-12=0
a = 80; b = 160; c = -12;
Δ = b2-4ac
Δ = 1602-4·80·(-12)
Δ = 29440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{29440}=\sqrt{256*115}=\sqrt{256}*\sqrt{115}=16\sqrt{115}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(160)-16\sqrt{115}}{2*80}=\frac{-160-16\sqrt{115}}{160} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(160)+16\sqrt{115}}{2*80}=\frac{-160+16\sqrt{115}}{160} $
| 1/4y+5=-9 | | 10x-4x-3=3 | | 5x–4=8+2x | | x+1/2+4=6+x | | 2x+201=7x+400 | | −2x+1=2x+5 | | 9.95+7.15p=60 | | n^2+13n=40 | | 2x+4(3x-8)=108 | | 7x+400=2x+201 | | 2x+2-1=7x+400 | | 2x+4(3x-8)=180 | | 2x+15=62-x | | 8-8(1=3x)=23-x | | F(n)=2.5n+75 | | 35-(2c+4)=2(c+3)+3 | | 3x-2/2=1-1/4 | | 2.5p(-3p-8)+5p=4(2.25p+5.5)+15.5 | | 12x-406=9x-196 | | -8=-2(6x-8) | | 9x-196=12x-406 | | 4x-8=2x+2x+9 | | 6a+212a10a-4=250 | | 3b+7-2b=20 | | 1/15=x/40 | | -3x=12=-48 | | 5x/2-3=6/7 | | 10x-9=15+3x | | X+x*6=287 | | 16x+13=125 | | −2x+5=−x+8 | | -5r+7=-3+5(-1r+2) |